If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+5=12y
We move all terms to the left:
4y^2+5-(12y)=0
a = 4; b = -12; c = +5;
Δ = b2-4ac
Δ = -122-4·4·5
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8}{2*4}=\frac{4}{8} =1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8}{2*4}=\frac{20}{8} =2+1/2 $
| 2d+2d-d=12 | | 8(m+3)=8 | | ∠5=3x+11 | | 3(p+6)=8p | | 4(w=18)-19=-3 | | 0=2x-5x+5x+1 | | 2a+21=8a−9= | | 4y^-12y=3 | | -14z+16z=4z | | 4y–9=15 | | 3(2+c)=36 | | 5.4=n^-0.9 | | 2u+40=-2(u-8) | | (3x-5)+(19-x)+2x=180 | | -1(x+3)-6=10 | | -86=n-37 | | u-5/4=7/4 | | 8*(10−k)=2k | | -2m+5(1+4m)=-13 | | 2(5-y)=18 | | 2(w+5)=-6w-46 | | 10d-6d-3d-d+2d=12 | | (3x-15)+2x=2x+(2x+24) | | 8(u-5)+2u=-10 | | 54=5y-11 | | 1/5x+17=3/5x-1 | | 84•28=w | | 23x+2=140 | | 3x-10=-2x+40 | | 1.54-0.1=x | | -7y+5(y+8)=26 | | x-3/8=16 |